

Pergamon

0040-4039(94)01825-1

1,2,5,6- and 1,2,7,8-Tetrakis(dimethylamino)naphthalenes and Their Dications: Syntheses and Properties

Annette Kirsch, Claus Krieger, Heinz A. Staab, and Franz A. Neugebauer*

Abteilung Organische Chemie, Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, D-69120 Heidelberg, Germany

Abstract: The new electron donor compounds 3 and 4 were synthesized and their properties were studied. Oxidation with iodine produced the corresponding dications. An X-ray crystal study of the dication 13 gives evidence of a cyanine-like structure.

The fascinating properties of the strong electron donor and "double proton sponge" 1,4,5,8-tetrakis(dimethylamino)naphthalene $(1)^{1,2}$ encouraged us to extend our studies to 1,2,5,6- and 1,2,7,8-tetrakis(dimethylamino)naphthalenes (3 and 4, respectively), which, as structural isomers, are also related to 2,3,6,7-tetrakis(dimethylamino)naphthalene (2).^{3,4} Whereas 1 can be considered to consist of two 1,4-bis(dimethylamino)benzene moieties, the structural isomers 2, 3 and 4 enclose two differently coupled 1,2-bis(dimethylamino)benzene elements.

For the synthesis of 3, 2,6-dimethoxy-1,5-dinitronaphthalene (5)⁵ was treated with excess of dimethylamine in dimethylformamide (autoclave, 24 h, 90°C) to give the 2,6-bis(dimethylamino) compound 6⁶ (red needles, m. p. 178-179°C, 45% yield). Catalytic hydrogenation of 6 (5% Pd on charcoal, tetrahydrofuran) afforded the rather unstable 1,5-diamino-2,6-bis(dimethylamino)naphthalene (7) which was directly converted by a fourfold N-methylation (sodium hydride, dimethyl sulfate, tetrahydrofuran)⁷ into 3, isolated as 3 (HBF₄)₂ salt⁶ [m. p. 270°C (decomp.), *ca.* 12% yield referred to 6]. Subsequent treatment with aqueous sodium hydroxide afforded the neat base 3⁶ (colourless needles, m. p. 135-136°C, 91%). In accordance with the structure, the ¹H-NMR spectrum of 3 (360 MHz, [D₆]acetone, 303 K, assignments based on NOE) shows singlet signals for the 2,6- ($\delta = 2.72$, 12H) and 1,5-dimethylamino hydrogens ($\delta = 2.97$, 12H) and doublets for the ring hydrogens at the 3,7- ($\delta = 7.30$, ³J = 9.1 Hz) and 4,8-positions ($\delta = 7.92$).

A similar synthetic approach led to the isomer 4. The 2,7-bis(dimethylamino) compound 9^6 (orange needles, m. p. 146°C, 85% yield), obtained by reaction of 2,7-dimethoxy-1,8-dinitronaphthalene (\$)⁸ with excess of dimethylamine in dimethylformamide (pressure flask, 70 h, room temperature), was hydrogenated

(5% Pd on charcoal, tetrahydrofuran) and the formed unstable 10 directly converted by N-methylation⁷ into 4, isolated as 4·(HBF₄)₂ salt⁶ [m.p. 232-234°C (decomp.), *ca.* 9% yield referred to 9). Repeated recrystallization afforded 4·HBF₄ [m.p. 254-256°C (decomp.)]⁶ and treatment of the salts with base provided neat 4⁶ [yellow needles, m. p. 78-80°C (decomp.); ¹H–NMR (500 MHz, [D₆]dimethyl sulfoxide, 303 K, assignment based on NOE): $\delta = 2.60$ (s, 12H, 2,7-NMe₂), 2.91 (s, 12H, 1,8-NMe₂), 7.20 (d, ³J = 8.7 Hz, 3,6-H), 7.42 (d, 4,5-H)].

The ¹H-NMR spectrum of 4·HBF₄ [500 MHz, [D₆]dimethyl sulfoxide, 303 K]: $\delta = 2.70$ (s, 12H, 2,7-NMe₂), 3.30 (d, ³J = 2.2 Hz, 12H, 1,8-NMe₂), 7.85 (d, ³J = 8.8 Hz, 3,6-H, assigned by NOE), 8.12 (d, 4,5-H), 19.81 (m, 1H, NH)], shows the expected downfield shift for the signal of the [N-H···N][⊕] proton. The basicity of 4 was determined by ¹H-NMR studies of protonation-deprotonation equilibria in [D₆]dimethyl sulfoxide⁹ yielding $pK_a = 11.2$ [referred to 1,8-bis(dimethylamino)naphthalene (11): $pK_a = 7.5$,¹⁰ and 1,8-bis(dimethylamino)-2,7-dimethoxynaphthalene (12): $pK_a = 11.5$] on the dimethyl sulfoxide pK_a scale.¹⁰ 4 is slightly less basic than the "super sponge" 12.

In case of 2 the cyclic voltammogram shows two separated one-electron oxidation steps at $E_{ox} = -0.01V$ and +0.07 V (data referred to Fc/Fc⁺ = 0.00 V, Fc = ferrocene).³ For the strong electron donor 1, on the other hand, a reversible two-electron transition, composed of two superimposed one-electron steps, is found cyclvoltammetrically at $E_{ox} = -0.50 V$.¹ Similarly, under analogous conditions of measurement,¹¹ also for 3 ($E_{ox} = -0.13 V$) and 4 ($E_{ox} = -0.33 V$) non separable two-electron transitions are observed. Despite strong steric interactions of the adjacent dimethylamino groups, 4 proves to be a stronger electron donor than 3.

The superposition of the two one-electron steps points out that considerable conformational changes take place on oxidation , as it has been demonstrated for 1 and its dication.^{1,2} Oxidation of 3 and 4 with four mole equivalents of iodine at low temperature (-30°C, dichloromethane) led to the formation of the corresponding dication salts,⁶ 13·(I₃⁻)₂·I₂ [black prisms, m.p. 259-260°C (decomp.), 97%; ¹H NMR (500 MHz, [D₃]acetonitrile, 303 K, assignments based on NOE and ¹³C,¹H-correlated spectra): $\delta = 3.31$ (s, 12H, 1,5-NMe₂), 3.41 (s, 12H, 2,6-NMe₂), 6.81 (d, ³J = 9.7 Hz, 3,7-H), 7.50 (d, 4,8-H); Vis-spectrum (acetonitrile, 240 K): λ_{max} (lge) = 685 (3.88) nm] and 14·(I₋₈)²⁻ [black-brown powder, m.p. 83-84°C (decomp.), 73%; ¹H NMR (500 MHz, [D₃]acetonitrile, 303 K, assignments based on NOE): $\delta = 3.20$ (br. s, 12H, 1,8-NMe₂), 3.24 (s, 12H, 2,7-NMe₂), 6.70 (d, ³J = 8.8 Hz, 3,6-H), 7.28 (d, 4,5-H); Vis-spectrum (acetonitrile, 240 K): λ_{max} (lge) = 723 (4.31), 426 (4.29) nm].

The molecular structure of the dication 13 (Figure 1) was established by X-ray diffraction. In the crystalline state 13 shows C_i symmetry. The dications are arranged in an alternating stack along the *b*-axis (4, 30°) with each dication being separated by two I₃⁻ counterions. The additional I₂ molecules are placed parallel to this array in channels along the *b*-axis. Owing to extensive charge delocalization the

8366

dimethylamino groups tend to adopt a coplanar arrangement with respect to the naphthalene skeleton [torsion angles: $C(4a^i)-C(1)-N(1')-C(1"A)$ 169.8(5)°, $C(4a^i)-C(1)-N(1')-C(1"B)$ 4(1)°, C(3)-C(2)-N(2')-C(2"A) 159.4(6)°, C(3)-C(2)-N(2')-C(2"B) –3(1)°]. The nitrogens become almost sp²-hybridized, as indicated by the mean trigonal angle of 119°, although the dimethylamino groups are substantially deformed owing to steric compression, particularly the C(1"A)-N(1')-C(1"B) [112.5(5)°] and C(2"A)-N(2')-C(2"B) [114.6 (6)°] angles. The steric interactions also force the naphthalene skeleton to adopt a twofold "envelope" conformation (Figure 1), in which C(1) and $C(1^i)$, corresponding to C_i symmetry, are displaced by 24 pm out of the naphtalene mean plane in opposite direction.

Figure 1. Molecular structure of 13. Above: top view of the naphthalene skeleton with bond lengths [pm] and angles [°]; below: side view.¹²

In support of a highly delocalized π -sytem with "cyanine-like" features the dication 13 shows no clearly alternating bond lengths. Particularly the C(1)-C(2) [145.9(9) pm] and the central C(4a)-C(4aⁱ) bond [142.5(9) pm], which are very close to typical C_{sp}2-C_{sp}2 single bonds (146.0 pm)¹⁴ indicate the presence of "pentacyanine-like" substructures, represented by the N(1'), C(1), C(4aⁱ), C(4ⁱ), C(2ⁱ), N(2ⁱ) and N(2'), C(2), C(3), C(4), C(4a), C(1ⁱ), N(1ⁱ) chains. All connecting bonds show considerable double-bond character (conjugated C_{sp}2=C_{sp}2: 135.5 pm).¹⁴ HMO-calculations of a corresponding model system predict for 13 also a cyanine-like structure.¹⁵

In agreement with this structure the ring hydrogen resonances of 13 ($\delta = 7.17$, 7.80, [D₆] acetone) are only slightly shifted to higher field as compared to the corresponding signals of 3 ($\delta = 7.30$, 7.92), whereas in case of quinonediimmonium structures significant shifts to lower field are observed.² Hence, the ¹H-NMR data of 14 ($\delta = 7.02$, 7.49, [D₆] acetone) as compared to those of 4 ($\delta = 7.22$, 7.43) support rather a cyanine-like than a quinone-diimmonium structure.

References and Notes

- T. Barth, C.Krieger, F. A. Neugebauer, H. A. Staab, Angew. Chem. Int. Ed. Engl. 1991, 30, 1028-1030; Angew. Chem. 1991, 103, 1006-1008.
- 2. T. Barth, C.Krieger, H. A. Staab, F. A. Neugebauer, J. Chem. Soc., Chem. Commun. 1993, 1129-1131.
- K. Elbl-Weiser, C. Krieger, H. A. Staab, Angew. Chem. Int. Ed. Engl. 1990, 29, 211-213; Angew. Chem. 1990, 102, 183-185. Cf. K. Elbl, C. Krieger, H. A. Staab, Angew. Chem. Int. Ed. Engl. 1986, 25, 1023-1024; Angew. Chem. 1986, 98, 1024-1026.
- 4. K. Elbl-Weiser, F. A. Neugebauer, H. A. Staab, Tetrahedron Lett. 1989, 30, 6161-6164.
- 5. S. N. Chakravarti, V. Pasupati, J. Chem. Soc. 1937, 1859-1862.
- 6. Elemental analysis and spectroscopic data are consistent with the given structure.
- 7. H. Quast, W. Risler, G. Döllscher, Synthesis, 1972, 558.
- 8. O. Fischer, W. Kern, J. Prakt. Chem. [2], 1916, 94, 34.
- 9. A. Kirsch, Diplomarbeit, University Heidelberg 1991; T. Barth, Diplomarbeit, University Heidelberg 1990.
- 10. Cf. R. L. Benoit, D. Lefebvre and M. Fréchette, Can. J. Chem., 1987, 65, 996-1001.
- 11. Cyclic voltammetry in acetonitrile/0.1 M tetrabutylammonium perchlorate, glassy carbon electrode versus Ag/AgCl; ferrocene standard Fc/Fc⁺ = 0.00 V.
- 12. N,N,N',N'-Tetramethyl[2,6-bis(dimethylamino)-1,5-dihydronaphthalen-1,5-diylidene]diammoniumbis(triiodide) [13·(I₃⁻)₂·I₂]: Black crystals from acetonitrile; cell constants: a = 774.6(2), b = 1041.3(3), c = 1179.0(3) pm, $\alpha = 108.66(2)$, $\beta = 108.19(2)$, $\gamma = 99.83(2)^{\circ}$, $V = 810(1)\cdot10^{6}$ pm³, Z = 1, $D_{calc.} = 2.699$ g·cm⁻³, μ (Mo-K_{α}) = 75.99 cm⁻¹, F(000) = 588 e; crystal system: triclinic, space group: $P\overline{1}$ (No. 2); 3229 reflections (sin $\theta/\lambda \le 6.6$ nm⁻¹) measured, 2264 reflections [I $\ge 3.0 \sigma$ (I)] observed, empirical absorption correction (Ψ -scans) $\tau_{min} = 58.09$, $\tau_{max} = 99.75$. Structure solved by heavy-atom method (PATTERSON); refinement R/R_w = 0.036/0.044.¹³
- 13. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.
- 14. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1-S19.
- 15. S. Dähne, Z. Chem. 1981, 21, 58-67; see page 63.

(Received in Germany 16 August 1994; accepted 16 September 1994)